References

Arnold13

V. I. Arnol’d. Mathematical methods of classical mechanics. Volume 60. Springer Science & Business Media, 2013.

Arn62

V. I. Arnold. The classical theory of perturbations and the problem of stability of planetary systems. Soviet Mathematics Doklady, 3:1008–1012, 1962.

Arn63a

V. I. Arnold. Proof of a theorem of A. N. Kolmogorov on the invariance of quasi-periodic motions under small perturbations of the Hamiltonian. Russian Mathematical Surveys, 18(5):9–36, 1963.

Arn63b

V. I. Arnold. Small divisor problems in classical and celestial mechanics. Russian Mathematical Surveys, 18(6):85–192, 1963.

BG97

J. Barrow-Green. Poincaré and the three body problem. Number 11. American Mathematical Soc., 1997.

Chi79

B. V. Chirikov. A universal instability of many-dimensional oscillator systems. Physics Reports, 52(5):263–379, 1979. doi:https://doi.org/10.1016/0370-1573(79)90023-1.

CEW11

P. Collins, G. S Ezra, and S. Wiggins. Index k saddles and dividing surfaces in phase space with applications to isomerization dynamics. The Journal of chemical physics, 134(24):244105, 2011.

DH96

F. Diacu and P. Holmes. Celestial Encounters: The Origins of Chaos and Stability. Princeton University Press, 1996.

Dui72

JJ Duistermaat. On periodic solutions near equilibrium points of conservative systems. Archive for Rational Mechanics and Analysis, 45(2):143–160, 1972.

Dum14(1,2)

H. S. Dumas. The KAM Story: A Friendly Introduction to the Content, History, and Significance of Classical Kolmogorovâ Arnoldâ Moser Theory. World Scientific Publishing Company, 2014.

Eld13

J Eldering. Normally Hyperbolic Invariant Manifolds. The Noncompact Case. Atlantis Press, 2013.

Fen71

N Fenichel. Persistence and smoothess of the invariant manifolds for flows. Indiana University Mathematics Journal, 1971.

Fen74

N. Fenichel. Asymptotic stability with rate conditions. Indiana Univ. Math. J., 23:1109–1137, 1974.

Fen77

N. Fenichel. Asymptotic stability with rate conditions, ii. Indiana Univ. Math. J., 26:81–93, 1977.

Gio02

A. Giorgilli. Notes on Exponential stability of Hamiltonian systems. Centro de ricerca Matematica Ennio De Giorgi Pisa, February 4-15., 2002.

GP10

Victor Guillemin and Alan Pollack. Differential topology. Volume 370. American Mathematical Soc., 2010.

Kel67

A. Kelley. On the liapounov subcenter manifold. Journal of mathematical analysis and applications, 18(3):472–478, 1967.

Kol57

A. N. Kolmogorov. Théorie générale des systèmes dynamiques et mécanique classique. In Proceedings of the International Congress of Mathematicians, Amsterdam, 1954, Vol. 1, 315–333. North-Holland Publishing Co., 1957.

Lia07

A. Liapounoff. Problème général de la stabilité du mouvement. In Annales de la Faculté des sciences de Toulouse: Mathématiques, volume 9, 203–474. 1907.

Lio55(1,2)

J. Liouville. Note sur l’intégration des équations différentielles de la dynamique, présentée au bureau des longitudes le 29 juin 1853. Journal de Mathématiques pures et appliquées, pages 137–138, 1855.

MM74

Lawrence Markus and Kenneth Ray Meyer. Generic Hamiltonian dynamical systems are neither integrable nor ergodic. Number 144. American Mathematical Soc., 1974.

Mei08

J. D. Meiss. Visual explorations of dynamics: The standard map. Pramana, 70(6):965–988, 2008. doi:10.1007/s12043-008-0103-3.

Min35

H. Mineur. Sur les systemes mécaniques admettant n intégrales premieres uniformes et l’extensiona ces systemes de la méthode de quantification de sommerfeld. CR Acad. Sci., Paris, 200:1571–1573, 1935.

Min37

H. Mineur. Sur les systèmes mécaniques dans lesquels figurent des paramètres fonctions du temps. Étude des systèmes admettant n intégrales premières uniformes en involution. extension à ces systèmes des conditions de quantification de bohr-sommerfeld. J. Ecole Polytechn, 3:173–191, 1937.

Mos58

J. Moser. On the generalization of a theorem of a. liapounoff. Communications on Pure and Applied Mathematics, 11(2):257–271, 1958.

Mos76

J. Moser. Periodic orbits near an equilibrium and a theorem by alan weinstein. Communications on Pure and Applied Mathematics, 29(6):727–747, 1976.

Mos01

J. Moser. Stable and random motions in dynamical systems: With special emphasis on celestial mechanics. Volume 1. Princeton university press, 2001.

Mos62

J. K. Moser. On invariant curves of area-preserving mappings of an annulus. Nachr. Akad. Wiss. Göttingen II, Math. Phys. Kl., pages 1–20, 1962.

Wei73

A. Weinstein. Normal modes for nonlinear hamiltonian systems. Inventiones mathematicae, 20(1):47–57, 1973.

Wig90

S Wiggins. On the geometry of transport in phase space I. transport in k-degree-of-freedom hamiltonian systems, $2 \le k< \infty $. Physica D: Nonlinear Phenomena, 44(3):471–501, 1990.

Wig94

S Wiggins. Normally hyperbolic invariant manifolds in dynamical systems. Springer-Verlag New York, 1994.

Wig04

S Wiggins. Introduction to Applied Nonlinear Dynamics and Chaos. Springer–Verlag, 2004.

WWJaffeU01

S Wiggins, L Wiesenfeld, C Jaffé, and T Uzer. Impenetrable Barriers in Phase-Space. Phys. Rev. Lett., 86(24):5478–5481, jun 2001. URL: https://link.aps.org/doi/10.1103/PhysRevLett.86.5478, doi:10.1103/PhysRevLett.86.5478.

Wig03(1,2)

S. Wiggins. Introduction to applied nonlinear dynamical systems and chaos. Volume 2. Springer Science & Business Media, 2003.

Wig16a

S. Wiggins. The role of normally hyperbolic invariant manifolds (nhims) in the context of the phase space setting for chemical reaction dynamics. Regular and Chaotic Dynamics, 21(6):621–638, 2016.

Wig16b

S. Wiggins. The role of normally hyperbolic invariant manifolds (NHIMS) in the context of the phase space setting for chemical reaction dynamics. Regular and Chaotic Dynamics, 21(6):621–638, 2016.